820 research outputs found

    Apodized pupil Lyot coronagraphs for arbitrary apertures. V. Hybrid Shaped Pupil designs for imaging Earth-like planets with future space observatories

    Full text link
    We introduce a new class of solutions for Apodized Pupil Lyot Coronagraphs (APLC) with segmented aperture telescopes to remove broadband diffracted light from a star with a contrast level of 101010^{10}. These new coronagraphs provide a key advance to enabling direct imaging and spectroscopy of Earth twins with future large space missions. Building on shaped pupil (SP) apodization optimizations, our approach enables two-dimensional optimizations of the system to address any aperture features such as central obstruction, support structures or segment gaps. We illustrate the technique with a design that could reach 101010^{10} contrast level at 34\,mas for a 12\,m segmented telescope over a 10\% bandpass centered at a wavelength λ0=\lambda_0=500\,nm. These designs can be optimized specifically for the presence of a resolved star, and in our example, for stellar angular size up to 1.1\,mas. This would allow probing the vicinity of Sun-like stars located beyond 4.4\,pc, therefore fully retiring this concern. If the fraction of stars with Earth-like planets is \eta_{\Earth}=0.1, with 18\% throughput, assuming a perfect, stable wavefront and considering photon noise only, 12.5 exo-Earth candidates could be detected around nearby stars with this design and a 12\,m space telescope during a five-year mission with two years dedicated to exo-Earth detection (one total year of exposure time and another year of overheads). Our new hybrid APLC/SP solutions represent the first numerical solution of a coronagraph based on existing mask technologies and compatible with segmented apertures, and that can provide contrast compatible with detecting and studying Earth-like planets around nearby stars. They represent an important step forward towards enabling these science goals with future large space missions.Comment: 9 pages, 6 figures, ApJ accepted on 01/04/201

    Gemini Planet Imager Observational Calibrations III: Empirical Measurement Methods and Applications of High-Resolution Microlens PSFs

    Full text link
    The newly commissioned Gemini Planet Imager (GPI) combines extreme adaptive optics, an advanced coronagraph, precision wavefront control and a lenslet-based integral field spectrograph (IFS) to measure the spectra of young extrasolar giant planets between 0.9-2.5 um. Each GPI detector image, when in spectral model, consists of ~37,000 microspectra which are under or critically sampled in the spatial direction. This paper demonstrates how to obtain high-resolution microlens PSFs and discusses their use in enhancing the wavelength calibration, flexure compensation and spectral extraction. This method is generally applicable to any lenslet-based integral field spectrograph including proposed future instrument concepts for space missions.Comment: 10 pages, 6 figures. Proceedings of the SPIE, 9147-282 v2: reference adde

    HST Scattered Light Imaging and Modeling of the Edge-on Protoplanetary Disk ESO-Hα\alpha 569

    Get PDF
    We present new HST ACS observations and detailed models for a recently discovered edge-on protoplanetary disk around ESO Hα\alpha 569 (a low-mass T Tauri star in the Cha I star forming region). Using radiative transfer models we probe the distribution of the grains and overall shape of the disk (inclination, scale height, dust mass, flaring exponent and surface/volume density exponent) by model fitting to multiwavelength (F606W and F814W) HST observations together with a literature compiled spectral energy distribution. A new tool set was developed for finding optimal fits of MCFOST radiative transfer models using the MCMC code emcee to efficiently explore the high dimensional parameter space. It is able to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in those derived properties. We confirm that ESO Hα\alpha 569 is an optically thick nearly edge-on protoplanetary disk. The shape of the disk is well described by a flared disk model with an exponentially tapered outer edge, consistent with models previously advocated on theoretical grounds and supported by millimeter interferometry. The scattered light images and spectral energy distribution are best fit by an unusually high total disk mass (gas+dust assuming a ratio of 100:1) with a disk-to-star mass ratio of 0.16.Comment: Accepted for publication in Ap

    The Structure of High Strehl Ratio Point-Spread Functions

    Full text link
    We describe the symmetries present in the point-spread function (PSF) of an optical system either located in space or corrected by an adaptive o to Strehl ratios of about 70% and higher. We present a formalism for expanding the PSF to arbitrary order in terms of powers of the Fourier transform of the residual phase error, over an arbitrarily shaped and apodized entrance aperture. For traditional unapodized apertures at high Strehl ratios, bright speckles pinned to the bright Airy rings are part of an antisymmetric perturbation of the perfect PSF, arising from the term that is first order in the residual phase error. There are two symmetric second degree terms. One is negative at the center, and, like the first order term, is modulated by the perfect image's field strength -- it reduces to the Marechal approximation at the center of the PSF. The other is non-negative everywhere, zero at the image center, and can be responsible for an extended halo -- which limits the dynamic range of faint companion detection in the darkest portions of the image. In regimes where one or the other term dominates the speckles in an image, the symmetry of the dominant term can be exploited to reduce the effect of those speckles, potentially by an order of magnitude or more. We demonstrate the effects of both secondary obscuration and pupil apodization on the structure of residual speckles, and discuss how these symmetries can be exploited by appropriate telescope and instrument design, observing strategies, and filter bandwidths to improve the dynamic range of high dynamic range AO and space-based observations. Finally, we show that our analysis is relevant to high dynamic range coronagraphy.Comment: Accepted for publication in ApJ; 20 pages, 4 figure

    Evidence for an Edge-On Disk around the Young Star MWC 778 from Infrared Imaging and Polarimetry

    Full text link
    MWC 778 is an unusual and little-studied young stellar object located in the IC 2144 nebula. Recent spectroscopy by Herbig and Vacca (2008) suggested the presence of an edge-on circumstellar disk around it. We present near-infrared adaptive optics imaging polarimetry and mid-infrared imaging which directly confirm the suspected nearly-edge-on disk around MWC 778 (i ~ 70-80 degrees) plus reveal a more extensive envelope pierced by bipolar outflow cavities. In addition, our mid-infrared images and near-infrared polarization maps detect a spiral-shaped structure surrounding MWC 778, with arms that extend beyond 6" on either side of the star. Although MWC 778 has previously been classified as an Herbig Ae/Be star, the properties of its central source (including its spectral type) remain fairly uncertain. Herbig & Vacca (2008) suggested an F or G spectral type based on the presence of metallic absorption lines in the optical spectrum, which implies that MWC 778 may belong to the fairly rare class of Intermediate-Mass T Tauri Stars (IMTTSs) which are the evolutionary precursors to Herbig Ae/Be objects. Yet its integrated bolometric luminosity, > 750 L_sun (for an assumed distance of 1 kpc) is surprisingly high for an F or G spectral type, even for an IMTTS. We speculate on several possible explanations for this discrepancy, including its true distance being much closer than 1 kpc, the presence of a binary companion, and/or a non-stellar origin for the observed absorption lines.Comment: Accepted to AJ. 11 pages, 3 figure

    An Analysis of Fundamental Waffle Mode in Early AEOS Adaptive Optics Images

    Full text link
    Adaptive optics (AO) systems have significantly improved astronomical imaging capabilities over the last decade, and are revolutionizing the kinds of science possible with 4-5m class ground-based telescopes. A thorough understanding of AO system performance at the telescope can enable new frontiers of science as observations push AO systems to their performance limits. We look at recent advances with wave front reconstruction (WFR) on the Advanced Electro-Optical System (AEOS) 3.6 m telescope to show how progress made in improving WFR can be measured directly in improved science images. We describe how a "waffle mode" wave front error (which is not sensed by a Fried geometry Shack-Hartmann wave front sensor) affects the AO point-spread function (PSF). We model details of AEOS AO to simulate a PSF which matches the actual AO PSF in the I-band, and show that while the older observed AEOS PSF contained several times more waffle error than expected, improved WFR techniques noticeably improve AEOS AO performance. We estimate the impact of these improved WFRs on H-band imaging at AEOS, chosen based on the optimization of the Lyot Project near-infrared coronagraph at this bandpass.Comment: 15 pages, 11 figures, 1 table; to appear in PASP, August 200

    High-contrast imager for Complex Aperture Telescopes (HiCAT): 1. Testbed design

    Get PDF
    Searching for nearby habitable worlds with direct imaging and spectroscopy will require a telescope large enough to provide angular resolution and sensitivity to planets around a significant sample of stars. Segmented telescopes are a compelling option to obtain such large apertures. However, these telescope designs have a complex geometry (central obstruction, support structures, segmentation) that makes high-contrast imaging more challenging. We are developing a new high-contrast imaging testbed at STScI to provide an integrated solution for wavefront control and starlight suppression on complex aperture geometries. We present our approach for the testbed optical design, which defines the surface requirements for each mirror to minimize the amplitude-induced errors from the propagation of out-of-pupil surfaces. Our approach guarantees that the testbed will not be limited by these Fresnel propagation effects, but only by the aperture geometry. This approach involves iterations between classical ray-tracing optical design optimization, and end-to-end Fresnel propagation with wavefront control (e.g. Electric Field Conjugation / Stroke Minimization). The construction of the testbed is planned to start in late Fall 2013.Comment: Proc. of the SPIE 8864, 10 pages, 3 figures, Techniques and Instrumentation for Detection of Exoplanets V

    Laser Guide Star Adaptive Optics Integral Field Spectroscopy of a Tightly Collimated Bipolar Jet from the Herbig Ae star LkHa 233

    Full text link
    We have used the integral field spectrograph OSIRIS and laser guide star adaptive optics at Keck Observatory to obtain high angular resolution (0.06"), moderate spectral resolution (R ~ 3800) images of the bipolar jet from the Herbig Ae star LkHa 233, seen in near-IR [Fe II] emission at 1.600 & 1.644 microns. This jet is narrow and tightly collimated, with an opening angle of only 9 degrees, and has an average radial velocity of ~ 100 km/s. The jet and counterjet are asymmetric, with the red-shifted jet much clumpier than its counterpart at the angular resolution of our observations. The observed properties are in general similar to jets seen around T Tauri stars, though it has a relatively large mass flux of (1.2e-7 +- 0.3e-7) M_sun/year, near the high end of the observed mass flux range around T Tauri stars. We also spatially resolve an inclined circumstellar disk around LkHa 233, which obscures the star from direct view. By comparison with numerical radiative transfer disk models, we estimate the disk midplane to be inclined i = 65 +- 5 degrees relative to the plane of the sky. Since the star is seen only in scattered light at near-infrared wavelengths, we detect only a small fraction of its intrinsic flux. Because previous estimates of its stellar properties did not account for this, either LkHa 233 must be located closer than the previously believed, or its true luminosity must be greater than previously supposed, consistent with its being a ~4 M_sun star near the stellar birthline.Comment: Accepted for publication in the Ap
    • …
    corecore